首页 男生 都市娱乐 最终诊断

765.隐蔽、狡猾、善变

最终诊断 号西风 6118 2024-07-16 20:28

  

最近在忙新书,还有本职工作,所以修改会慢一点,大家可以等完本再看放疗(RT)是肺癌必不可少的治疗方式。对于不适合手术的IIIA和IIIB期肺癌患者,根治性放化疗是治疗标准,这一点已被广泛接受。不幸的是,放疗后肿瘤的再生长是成功控制疾病的主要障碍。

  

临床前研究表明,放疗对原发部位和转移部位的肿瘤免疫微环境具有双重作用。一方面,局部照射有可能激活针对远离照射区域的肿瘤细胞的全身免疫反应,即远隔效应,由Mole在1953年首次报道。RT促进肿瘤抗原从垂死的肿瘤细胞中释放,上调MHCI类表达,并增加多种细胞因子和免疫效应分子的表达,包括白细胞介素(IL)1、细胞间粘附分子1(ICAM1)和血管细胞粘附分子1(VCAM1),所有这些都有助于由辐射引发的持久和全身抗肿瘤免疫。另一方面,放疗促进了肿瘤细胞的免疫逃避。例如,RT上调多种免疫抑制细胞因子的表达,如肿瘤坏死因子α(TNFα)、IL6、IL10和转化生长因子β(TGFβ)。RT促进免疫抑制细胞的积累,例如肿瘤相关巨噬细胞(TAM)、调节性T(Treg)细胞和髓源性抑制细胞(MDSC)。辐射增强免疫检查点的活性,如程序性细胞死亡蛋白1(PD1)/PDL1、细胞毒性T淋巴细胞相关蛋白4()、T细胞免疫球蛋白和含粘蛋白结构域的蛋白3(TIM3),和淋巴细胞激活基因3(LAG3)。

  

为了克服放疗的免疫抑制作用,已经提出并测试了免疫疗法和放疗的各种组合。在PACIFIC研究中,标准放化疗后加入durvalumab可延长III期NSCLC患者的无进展生存期和总生存期。PACIFIC研究的巨大成功不仅改变了III期非小细胞肺癌的临床指南,也引起了其他免疫疗法与RT结合的极大兴趣。

  

MDSCs的积累和激活在免疫抑制的建立中起关键作用。RT对MDSCs的确切影响是复杂的。大分割照射(20Gy)抑制MDSCs的积累和浸润,而较低剂量的照射往往会促进MDSCs募集到肿瘤中。此外,临床前和临床研究表明,胃肠道肿瘤,包括结直肠癌和肝癌,在放疗后相对容易出现MDSCs水平降低,而在其他肿瘤模型和临床环境中,如胶质瘤、肺癌、乳腺癌、头颈部鳞癌、前列腺癌和宫颈癌,导致MDSC数量持续增加。蔡等人首次报道MDSCs的PDL1表达被辐照上调。然而,关于MDSCs的确切作用,尤其是其潜在机制,在辐照后塑造TME方面知之甚少。

  

MDSCs是一组具有强大免疫抑制能力的异质髓细胞。根据表型和形态,MDSCs又可分为多形核MDSCs(PMNMDSCs,又称粒细胞型MDSCs)和单核型MDSCs(MMDSCs)。

  

免疫抑制活性是MDSCs的关键标志。MDSCs的抑制机制包括诱导型一氧化氮合酶(iNOS)、精氨酸酶1(ARG1)和吲哚胺2,3双加氧酶(IDO)的表达,以及一氧化氮(NO)和活性氧(ROS)的产生。这些不同的机制不会同时起作用。人们普遍认为PMNMDSCs和MMDSCs通过不同的机制调控TME。此外,PDL1的上调也被认为是辐射招募MDSCs的免疫抑制机制之一。目前,对于辐照诱导的MDSCs对TME的影响及放疗的治疗效果尚无一致的结论。

  

磷酸二酯酶5(PDE5)抑制剂,如西地那非和他达拉非,可以阻断环磷酸鸟苷(cGMP)的水解。最新数据表明,PDE5抑制剂能够通过抑制荷瘤(TB)小鼠和患者MDSC中iNOS和ARG1的活性和表达来促进抗肿瘤免疫。然而,PDE5抑制剂如何影响MDSC的亚群以及RT和PDE5抑制剂的组合是否会延迟辐射后的肿瘤再生尚未得到测试。

  

我们最近的研究表明,消除招募的MDSC会延迟放疗后路易斯肺癌(LLC)的再生。在这里,我们报告了局部照射通过促进PMNMDSC的增殖及其随后向TME的募集而削弱了抗肿瘤免疫力。ARG1的上调和激活是照射后PMNMDSCs介导的T细胞抑制的主要机制。西地那非与放疗的组合通过抑制ARG1过表达和PMNMDSC募集消除了辐射衍生的免疫抑制。

  

在TB小鼠和癌症患者中,MDSCs随着肿瘤的生长而扩增。MDSCs的两个亚群之间的比例取决于特定的肿瘤模型和微环境。为了监测同源LLC模型中MDSC的丰度,我们通过免疫表型分析确定了接种后肿瘤的生长以及LLC小鼠中不同时间点的总体MDSC及其亚群。

  

如图1C所示,肿瘤组织中总MDSCs的百分比随着肿瘤的发展而稳步增加,从接种后第一周肿瘤浸润淋巴细胞的不到10(5.84±1.22)上升到第四周超过20(21.71±3.22)(P<0.01)。在我们的LLC模型中,PMNMDSCs占总MDSCs的94.94±8.47,并且与总MDSCs具有相同的肿瘤发展趋势(P<0.05)。对亚群进行分析,虽然MMDSCs增加了大约5倍,但差异没有统计学意义。

  

为了更好地了解MDSCs的全身分布,我们还研究了MDSCs在外周血、脾脏和骨髓中的比例。仅在接种LLC细胞一周后,TB小鼠外周血中的MDSC百分比是无瘤小鼠的两倍(27.33±4.62vs.12.48±0.93,P<0.05),3周后的MDSC百分比是无瘤小鼠的5倍(27.33±4.62vs.12.48±0.93,P<0.05)。TB小鼠外周血中PMNMDSCs的比例也增加,而MMDSCs的比例与肿瘤大小无关。

  

PDL1是肿瘤细胞、MDSCs、巨噬细胞和树突状细胞表达的最重要的检查点分子之一。为了确定TB小鼠MDSCs的PDL1表达是否与健康小鼠不同,我们通过流式细胞术测试了MDSCs的PDL1表达。结果表明,TME中MDSCs上PDL1的平均荧光强度(MFI)从在LLC细胞接种后的第一周386.8±100.9逐渐增加到第四周的1,068.0±121.8(P<0.01),这表明PDL1在我们模型中的MDSC中具有潜在作用。

  

在脾脏和骨髓中,随着肿瘤的发展,MDSCs的比例也显著增加,其模式与肿瘤组织和外周血中的MDSCs相同。此外,我们在TB小鼠中观察到明显的脾肿大,这与我们观察到的MDSCs在脾内聚集一致。

  

为了确定局部照射对肿瘤生长和MDSCs的影响,当肿瘤直径达到7.5mm时,我们使用大分割RT(20Gy/F)治疗皮下LLC肿瘤。放疗导致肿瘤进展延迟长达一周,在第7至第10天的最小体积约为500mm3,但此后肿瘤开始再生。根据放疗前后肿瘤生长曲线,我们选择放疗后第3天为再生前生长,放疗后1周为肿瘤体积最小时为再生开始,放疗后2周和3周为再生阶段。肿瘤组织苏木精伊红染色显示,与未治疗的肿瘤相比,放疗后的肿瘤中有更多的浸润性炎症细胞。随后的CD11b特异性免疫组化染色显示,大多数炎症细胞是CD11b髓系细胞,这表明局部照射可能导致MDSCs的积累。为了证实我们的假设,我们在局部照射后的不同时间点对总MDSCs和这两个亚群进行了流式细胞术分析。局部照射后,放疗后肿瘤浸润MDSCs的比例比未治疗肿瘤高2倍(ctrlvs.RT21.33±3.29vs.44.10±3.00,P<0.001)。PMNMDSCs与总MDSCs具有相同的增加趋势(ctrlvs.RT16.37±2.47vs.38.66±4.24,P<0.001),而MMDSC比例保持在约0.1,且与肿瘤大小和治疗无关。外周血情况同肿瘤组织。

  

为了确定受照射肿瘤中PMNMDSC的逐渐积累是否有助于LLC肿瘤的再生长,或者这种积累是否仅仅是肿瘤生长的结果,使用抗Ly6G单克隆抗体来消耗MDSC.抗Ly6G抗体的应用显着降低了肿瘤部位和外周血中PMNMDSC的频率(P<0.05)。此外,用抗Ly6G抗体治疗大大延迟了照射后的再生,这表明PMNMDSC的募集对肿瘤再生至关重要。

  

虽然PMNMDSCs利用一系列机制来抑制抗肿瘤免疫反应,这涉及到许多免疫细胞和细胞因子,但对CD8T细胞的抑制无疑是最重要的。为了确定RT后PMNMDSCs诱导的免疫抑制是否依赖于CD8T细胞,我们通过流式细胞术评估了CD8T细胞的数量和功能。

  

如图3D所示,CD8T细胞的百分比随着照射从11.71±2.31下降到2.42±0.62(P<0.01)。PMNMDSC耗竭逆转了这种下降(RTantiLy6G抗体2.42±0.62vs.20.12±3.92,P<0.01)。为了更好地了解CD8T细胞浸润肿瘤部位的功能状态,我们测量了CD8T细胞内部和表面上IFNγ、CD28和PD1的表达。局部RT显着降低了CD8T细胞分泌IFNγ的比例,从33.064.53降至13.252.08,并增加了表达PD1的CD8T细胞的比例(ctrlvs.RT253.20±57.03auvs.538.80±98.76)au,P<0.05)。

  

CD28表达未观察到显着变化。当抗Ly6G抗体被给予辐照小鼠时,IFNγ分泌达到与未处理的LLC小鼠相同的水平(29.74±3.55),而与辐照小鼠进行比较抗Ly6G抗体处理后的PD1表达没有变化小鼠。因此,在这部分我们建议PMNMDSCs通过抑制CD8T细胞促进放疗后肿瘤的再生。PMNMDSCs不仅抑制了TME中CD8T细胞的数量,而且还抑制了其活性。

  

为了确定辐照诱导MDSCs的抑制机制,我们进行了免疫组化染色及iNOS和ARG1活性检测。肿瘤切片的免疫组化染色显示,局部RT增强了ARG1的表达,但没有增强iNOS的表达。ARG1活性测定表明,局部照射显著提高了ARG1的活性,从0.400.15U/L提高到3.780.39U/L((P<0.01)。相比之下,NO荧光标记的iNOS活性检测显示,辐照和未处理的肿瘤组织样本的荧光强度相似。

  

PDL1的表达是MDSCs的一种新型免疫抑制机制。然后我们询问PDL1上调是否是RT后MDSCs介导的免疫抑制的机制之一。通过流式细胞术分析辐照后MDSC中PDL1的表达。图4E显示,与未处理组相比,受照射肿瘤的MDSC中的PDL1表达在照射后不久显着增加(照射后第三天:ctrlvs.RT443.9±175.3auvs.1328.0±324.3au,P<0.05).然而,此后PDL1表达继续下降,局部照射组在照射后第3周显着低于未治疗组(ctrlvs.RT1,465.0±399.6auvs.407.5±164.8au,P<0.05)。外周血中MDSCs的PDL1表达与局部肿瘤部位的表达趋势相同。

  

以上数据表明ARG1表达的上调是照射后PMNMDSCs抑制功能的合理机制。然而,不涉及PDL1和iNOS的调节。为了进一步证实这一假设,在辐射后通过灌胃给予ARG1抑制剂norNOHA。10mg/kg/dnorNOHA有效地将ARG1活性从3.780.39U/L降低到2.020.25U/L(P<0.01)。

  

RT后给予norNOHA显着增加CD8T细胞比例(RTvs.RTnorNOHA2.420.62vs.6.140.64,P<0.01),并伴有肿瘤再生延迟。iNOS抑制剂1400W对肿瘤再生长没有影响。

  

我们的结果表明,RT通过上调肿瘤内PMNMDSC的百分比和ARG1活性来促进肿瘤免疫逃避。推测抑制PMNMDSCs及其ARG1活性可能是一种新的抗肿瘤策略是合理的。越来越多的证据表明,PDE5抑制剂可以抑制TB小鼠和癌症患者MDSC中iNOS和ARG1的活性和表达。因此,通过灌胃给予西地那非20mg/kg/d,以研究它是否可以促进RT的抗肿瘤作用并阐明潜在机制。如图5B所示,正如我们预期的那样,西地那非延迟了照射后的肿瘤再生长,这与阳性对照NorNOHA相当。TME的免疫特征表明,当给予西地那非时,肿瘤内PMNMDSC的比例从38.66±4.24下降到23.57±2.38。

  

此外,西地那非也显着降低了ARG1的表达。为了进一步检查西地那非对MDSC的抑制是否真的导致抗肿瘤免疫增强,我们分析了肿瘤内CD8T细胞的比例和活性。流式细胞术分析表明CD8T细胞的百分比从2.42±0.62增加到7.21±1.22。

  

此外,当给予西地那非时,CD8T细胞分泌的IFNγ也显着升高。因此,我们证实PDE5抑制剂西地那非通过调节PMNMDSCs改善了照射后肿瘤免疫微环境。西地那非联合放疗可能是提高放疗疗效的一种有前景的策略。

  

工作揭示了PMNMDSCs中ARG1通路介导RT后肿瘤再生的新机制,如图6所示。我们认为,PMNMDSCs是辐照招募的主要亚型,而不是MMDSCs。在广泛的免疫抑制机制中,ARG1的上调和激活是PMNMDSCs在放疗后抑制CD8T细胞的主要机制。为了克服PMNMDSCs引起的免疫抑制,我们提出并证明,sildenafil和RT联合使用降低了PMNMDSCs在TME内的募集和免疫抑制作用,激活了CD8T细胞应答,导致肿瘤生长延迟。综上所述,我们的研究结果为缓解免疫抑制TME以提高RT治疗效果提供了一种新的解决方案。虽然所有这些结果都是在LLC小鼠模型中进行的,但同样的机制是否适用于其他肿瘤模型尚不清楚。此外,在不同的辐射方案下,MDSCs及其亚型如何影响TME仍未确定。因此,这些问题还需要进一步的研究来解决。

  

目录
设置
手机
书架
书页
评论